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Using the self-consistent Born approximation to the Dirac fermions under finite-range impurity scatterings,
we show that the current-current correlation function is determined by four-coupled integral equations. This is
very different from the case of impurities with short-range potentials. As a test of the present approach, we
calculate the electric conductivity in graphene for charged impurities with screened Coulomb potentials. The
obtained conductivity at zero temperature varies linearly with the carrier concentration, and the minimum
conductivity at zero doping is larger than the existing theoretical predictions, but still smaller than that of the
experimental measurement. The overall behavior of the conductivity obtained by the present calculation at
room temperature is similar to that at zero temperature except that the minimum conductivity is slightly larger.
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I. INTRODUCTION

Electronic transport properties of graphene have attracted
much interest and experimental measurements were per-
formed recently.1–4 Many theoretical models for the electric
transport in graphene were focused on the short-range impu-
rity scatterings,5–11 but the predictions cannot describe the
experimental observations that the electric conductivity of
graphene linearly depends on the carrier concentration.2 For
the charged impurity scatterings, some theoretical works in-
cluding the numerical diagonalization of the finite-electron
system12 and the calculations using the Boltzmann
formalism13 have been performed. The obtained electric con-
ductivity is in overall agreement with the experiment. These
works show strong evidence that the charged impurities are
responsible for the electronic transport properties in
graphene.

The Boltzmann transport theory for graphene is based on
the one-band approximation,13–15 which is different from the
usual two-dimensional systems. Its validity may become
questionable for Dirac fermions at small carrier concentra-
tions and at finite temperatures. The graphene has a band
structure analogous to the massless relativistic Dirac particle.
At low carrier concentrations, the Fermi energy is close to
zero, where the upper and lower bands touch each other.
Particularly, at zero doping and finite temperature, we have
particle and hole excitations in the upper and lower bands. In
this case, charge carriers in both bands should contribute to
the electric transport. Therefore, the development of a proper
transport theory for the Dirac fermions is of fundamental
importance. The method of using the current-current correla-
tion function should be such a choice, but it has been applied
only for short-range impurity scatterings. Because of the
complex nature of the involved matrix algebra, this approach
has not yet been extended to study the transport in graphene
with impurities of finite-range potentials.

In this work, we present a different formalism for the
electric transport of Dirac fermions under finite-range impu-
rity scatterings based on the current-current correlation func-
tion. The current-vertex correction is shown to be determined
by four-coupled integral equations. The two energy bands of

the Dirac fermions are taken into account in this scheme. The
present result should provide the more reasonable description
of the electric transport of Dirac fermions at low doping and
at finite temperature.

II. FORMALISM

We start with the Hamiltonian for electron-impurity inter-
actions in graphene,

H1 = �
j
� dR� n�r� j�vi��r� j − R� ��ni�R� � , �1�

where n�r� j� is the density operator of electrons at site j of the

honeycomb lattice, ni�R� � is the real space density distribution

of impurities, and vi��r� j −R� �� is the impurity scattering poten-
tial. For the situations related to low energy levels, electrons
can be described by the Dirac fermions. The energy bands
are given by two Dirac cones at the corners of the hexagon
Brillouin zone. By noting this fact, we separate H1 in mo-
mentum space into two parts: intravalley scatterings �within
the same Dirac cone� and the intervalley ones �between the
different Dirac cones�. Using the Pauli matrices’ �’s and �’s
to coordinate the electrons in the two sublattices and two
valleys, and suppressing the spin subscripts for briefness, the
total Hamiltonian is given by

H = �
k

�k
†vk� · �� �3�k +

1

V
�
kq

�k−q
† Vi�q��k, �2�

where �k
†= �cka1

† ,ckb1
† ,cka2

† ,ckb2
† � is the electron operator, with

a and b denoting the sublattice and 1 and 2 for the valley
indices; the momentum k is measured from the center of
each valley; v ��5.856 eVÅ� is the Fermi velocity of elec-
trons; V is the two-dimensional volume of system; Vi�q�
=�n��q+Qn�, with Qn the reciprocal honeycomb-lattice vec-
tor �where the summation over Qn is the result of separating
the Fourier integral of the impurity potential over the whole
momentum space into Brillouin zones�; and ��q� is given by
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��q� = � ni�− q�vi�q��0 ni�Q − q�vi�q − Q��0

ni�− Q − q�vi�q + Q��0 ni�− q�vi�q��0
� ,

with Q a vector from the center of valley 2 to that of the
valley 1, and �0 is the 2�2 unit matrix. Here, all the mo-
menta are understood as vectors. A sketch of the Brillouin
zone and valleys is shown in Fig. 1�a�. From our previous
result,16 the cutoff of k for k summation is about kc�� /3 �in
unit of the lattice constant a=1�, within which the electrons
can be regarded as Dirac particles. The momentum transfer q
is constrained so that an electron at k is scattered to k+q
�k+q+Q� in the same �different� valley. Within the validity
of the Dirac-fermion description for graphene, the carrier
concentrations should be low and the radius of the Fermi
circle is thereby small. Since the most important momentum
transfer is about the order of the diameter of Fermi circle, for
low energy excitations, q is small. Therefore, the off-
diagonal elements vi�q+Q+Qn�’s can be considered as con-
stants independent of q. Similarly, for the diagonal part, we
have vi�q+Qn�	vi�Qn� for Qn�0. Within the self-consistent
Born approximation, after the average over the random im-
purity distributions, the impurity potentials will appear in the
final result as

1

V
�

n


ni�q + Qn�ni�− q − Qn��vi
2�q + Qn� = ni�

n
vi

2�q + Qn� ,

where ni is the average impurity density. We can then define
the effective potentials v0�q� and v1 for the intravalley and
intervalley scatterings, respectively, by

v0
2�q� = �

n
vi

2�q + Qn� 	 vi
2�q� + �

n�0
vi

2�Qn� ,

v1
2 = �

n
vi

2�Qn − Q� .

With these effective potentials, one needs to consider only
one component without the summation over all Qn.

To analyze the electric transport, we first evaluate the
Green function. We here use the self-consistent Born
approximation17–19 �SCBA� that is shown in Fig. 1�b�. Since
the effective potentials are isotropic functions of q, the self-
energy 	�k� ,
� can be expressed as 	0�k ,
��0�0

+	c�k ,
��3k̂ ·�� , with k̂ the unit vector in k� direction. We will
occasionally drop the unity matrix �0�0 for briefness. The
Green function G�k� ,
� and the self-energy 	�k� ,
� are de-
termined by

G�k�,
� =

̃ + hk�3�� · k̂


̃2 − hk
2 , �3�

	0�k,
� =
ni

V
�
k�

�v0
2��k� − k���� + v1

2

̃


̃2 − hk�
2 , �4�

	c�k,
� =
ni

V
�
k�

v0
2��k� − k����

hk�k̂ · k̂�


̃2 − hk�
2 , �5�

where 
̃=
+�−	0�k ,
� with � the chemical potential,
hk=vk+	c�k ,
�, and the frequency 
 is understood as a
complex quantity with infinitesimally small imaginary part.

The current operator is v�3�� . The x-direction current ver-
tex v�x�k� ,
1 ,
2� satisfies the following 4�4 matrix equa-
tion:

�x�k�,
1,
2� = �3�x +
1

V2�
k�


Vi�k� − k���G�k��,
1�

��x�k��,
1,
2�G�k��,
2�Vi�k�� − k��� , �6�

where 
¯� means the average over the impurity distribu-
tions. This equation is shown diagrammatically in Fig. 1�c�.
It satisfies the Ward identity under the SCBA. To solve this
equation, we analyze the structure of �x. First, since the out-
going and incoming momenta are the same k� belonging to
the same valley, the vertex matrix �x�k� ,
1 ,
2� is diagonal in
the valley space. In the right hand side of Eq. �6�, except for
Vi, all others are diagonal in the valley space. Because of

ni�q+Q�ni�−q�−Q�� /V=niqq�, the off-diagonal elements of
Vi always appear in the right hand side of Eq. �6� as pairs:

Vi,���k� −k���Vi,���k��−k��� �with Vi,�� and Vi,�� as, respec-
tively, the ��th and ��th elements of Vi�. Even if Vi is not
diagonal, the average over the impurity distributions leads to
the diagonal form in the valley space. Therefore, the diago-
nal form of �x is not changed by the impurity insertions.
Second, supposing Eq. �6� is solved by iteration, one finds
that only the matrices

= +x

k ω2

k ω1

1

2

Q

(a)

(c)

(b)

x

x

FIG. 1. �a� Brillouin zone and the two Dirac-cone valleys. �b�
Self-consistent Born approximation for the self-energy. The solid
line with arrow is the Green function. The dashed line is the effec-
tive impurity potential. �c� Current vertex with impurity insertions.

YAN, ROMIAH, AND TING PHYSICAL REVIEW B 77, 125409 �2008�

125409-2



A0
x�k̂� = �3�x,

A1
x�k̂� = �x�� · k̂ ,

A2
x�k̂� = �� · k̂�x,

A3
x�k̂� = �3�� · k̂�x�� · k̂

are involved in the operations. For example, the result of the
first-round iteration contains only these matrices. No other
matrices can be generated in further interactions. That is to
say, these matrices form a complete basis for the vertex �x.
To see this, we need to prove that the resultant matrix of the

multiplication of any one of these matrices with �3�� · k̂
�which appears in G�k� ,
� from both sides belongs to the
same assembly. Actually, the matrix multiplications are given
by

�3�� · k̂�A0
x,A1

x,A2
x,A3

x� = �A2
x,A3

x,A0
x,A1

x� , �7�

�A0
x,A1

x,A2
x,A3

x��3�� · k̂ = �A1
x,A0

x,A3
x,A2

x� . �8�

Therefore, we can expand the vertex function as

�x�k�,
1,
2� = �
j

yj�k,
1,
2�Aj
x�k̂� , �9�

which means

yj�k,
1,
2� = �
0

2�

d� Tr�Aj
x†�k̂��x�k�,
1,
2�/8� , �10�

with � the angle of k�. From Eq. �6�, we obtain the equations
determining the coefficients yj,

yj�k,
1,
2� =  j0 +
1

V
�
k�j�

Uj��k�

− k����Ljj��k�,
1,
2�yj��k�,
1,
2� , �11�

where U0�q�=ni�v0
2�q�−v1

2, U1�q�=U2�q�=niv0
2�q�cos �, and

U3�q�=niv0
2�q�cos 2�, with q= �k� −k���, � is the angle between

k� and k��, and

Ljj��k,
1,
2� = �
0

2� d�

8�
Tr�Aj

x†�k̂�G�k�,
1�Aj�
x �k̂�G�k�,
2� .

�12�

By expressing the Green function in the form

G�k�,
l� = g0l + gcl�3�� · k̂ , �13�

the matrix L can be obtained as

L =�
g01g02 g01gc2 gc1g02 gc1gc2

g01gc2 g01g02 gc1gc2 gc1g02

gc1g02 gc1gc2 g01g02 g01gc2

gc1gc2 gc1g02 g01gc2 g01g02

� .

According to the Kubo formalism, the imaginary-time
current-current correlation function ������ is defined as

������ = −
2

V

T�J����J�

†�0�� , �14�

where J����=−�k��k�
†���v�3���k���� is the �th component of

the current per spin, and the factor 2 takes care of the spin
freedom. Using the definition of J����, we express ������ as

������ =
2v2

V
�
k�k��

Tr
T��k���0��k�
†����3���k�����k��

† �0��3��� .

To the lowest order in ni, in the frequency space, ��� is
given by

���
0 �i�m� =

2v2T

V
�
k�,n

Tr G�k�,i
n��3��G�k�,i
n + i�m��3��,

�15�

where T is the temperature, and 
n and �m are the fermion
and boson Matsubara frequencies, respectively. With the im-
purity insertions under the conserving approximation consis-
tent with the SCBA to the single particle Green function,
����i�m� is obtained as

����i�m� =
2v2T

V
�
k�,n

Tr G�k�,i
n����k�,i
n,i
n + i�m�

�G�k�,i
n + i�m��3��

� T�
n

P���i
n,i
n + i�m� . �16�

The conductivity � is given by20

� = �
−�

� d


2�
�−

dF�
�
d


��P�
−,
+� − Re P�
+,
+� ,

where F�
� is the Fermi function, and P�
1 ,
2�
� Pxx�
1 ,
2� is obtained as

P�
1,
2� =
2v2

V
�

k

Tr�A0
xG�k�,
1��x�k�,
1,
2�G�k�,
2�

and 
�=
� i0. Using Eq. �9�, we get

P�
1,
2� =
8v2

V
�
kj

L01�k,
1,
2�yj�k,
1,
2� .

For 
1=
− and 
2=
+, y0 and y3 are real, y1=y
2
*, and

P�
− ,
+� can be shown to be real. On the other hand, by
using the Ward identity

�x�k�,
+,
+� = �3�x +
�

v�kx
	�k�,
+� , �17�

the function P�
+ ,
+� can be obtained explicitly

P�
+,
+� =
1

2�
Tr�vk�c · �� �3G�k�c,


+� . �18�

For the case of ��vkc and the magnitude of the
self-energy�vkc, the term −Re P�0+,0+� /2� contributes a
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value �2 /� �in unit of e2 /h� independent of the doping to
the zero-temperature conductivity. This is part of the mini-
mum conductivity at zero doping, but it is missing in the
one-band Boltzmann theory. Since the vertex correction is
now determined by the four-coupled integral equations �6�,
the upper and lower energy bands of the Dirac fermions are
automatically taken into account by the Green function.

The Boltzmann formalism corresponds to the one-band
approximation without intervalley scatterings �v1=0�. For
electron doping, the conduction band is the upper band. By
the upper band approximation, the Green function reads

G�k�,
� 	 �1 + k̂ · �� �3�/2�
̃ − hk� , �19�

and the function Ljj��k ,
1 ,
2� reduces to

Ljj��k,
1,
2� 	 G+�k,
1�G+�k,
2�/4, �20�

with G+�k ,
�=1 / �
+�−vk−	+�k ,
�. The self-energy
	+�k ,
��	0�k ,
�+	c�k ,
� is determined by

	+�k,
� =
ni

2V
�
k�

v0
2��k� − k�����1 + cos ��G+�k�,
� .

The vertex function �x�k� ,
1 ,
2� is now related to only one
function z�k ,
1 ,
2�=� jyj�k ,
1 ,
2�. The latter is deter-
mined by the equation obtained by summation of Eq. �11�
over j:

z�k,
1,
2� = 1 +
ni

2V
�
k�

v0
2��k� − k�����1 + cos ��cos �

�G+�k�,
1�G+�k�,
2�z�k�,
1,
2� . �21�

By the further approximation G+�k� ,0−�G+�k� ,0+�
	−��EF−vk�Im 	+�k ,0+� with EF=vkF as the Fermi en-
ergy, one can obtain exactly the zero-temperature Boltzmann
result.13–15,20

Another case is the artificial point-contact impurity
model. In this model, v0�q�=v0 is a constant, and v1=0. Now
in Eq. �11�, except for U0, all other angle integrals of Uj
vanish. Therefore, y0 is the only relevant function in ques-
tion. The function turns to be independent of the momentum
and can be solved as y0�
1 ,
2�= �1−U0c�
1 ,
2�−1 with

c�
1,
2� =
1

V
�

k

L00�k,
1,
2� . �22�

The function P�
1 ,
2� is obtained as

P�
1,
2� =
8v2c�
1,
2�

1 − U0c�
1,
2�
, �23�

which coincides with the existing result.11 For the real zero-
range impurity scatterings, v0=v1, and U0=0 implying no
vertex correction from the impurity insertions, one obtains
P�
1 ,
2�=8v2c�
1 ,
2�.

III. RESULT

The experimental observations of the electric transport in
graphene have been previously analyzed.10,12,13 It is indi-

cated that the charged impurities are the predominant scat-
terers in graphene. To test our theory, we calculate the elec-
tric conductivity in graphene and compare it with the
experimental results. In our numerical calculation, we adopt
the charged impurity potential as the Thomas-Fermi �TF�
type, vi�q�=2�e2 / �q+qTF��, where qTF=2�e2� /�, ��3 is
the dielectric constant due to the substrate electron screening,
and � is the long-wavelength-limit static polarizability of the
noninteracting electron system defined by

� =
2

V
�

k�
�

0

�

d�
T�n���n†�0��c, �24�

with n���=�k��k�
†����k����. Here, 
¯�c means that all the

Green functions in the Feynman diagram are connected, and
the factor 2 again comes from the spin freedom. By using the
Green function of the noninteracting Dirac fermions, � at
low temperature T is calculated as

� = −
2T

V
�
k�,n

Tr G0�k�,i
n�G0�k�,i
n�

=
2�

�v2�1 +
2T

�
ln�1 + e−�/T�� . �25�

The chemical potential � is determined by

S

V
�

k

�F�vk − �� + F�− vk − �� − 1 =  , �26�

where S=�3a2 /2 is the unit-cell area of the honeycomb lat-
tice, with a�2.4 Å the lattice constant, and  is the doped
electron concentration per site. At T=0, �=2kF /�v and the
Fermi wave number kF is determined by kF

2 =4� /�3a2. For
low carrier doping concentrations, qTF is small and the effec-
tive potential v0�q� comes mainly from its leading term,
v0�q�	vi�q�. For the off-diagonal part v1, we use simply its

ka

0.0 0.1 0.2 0.3 0.4 0.5

y j(k
)

0.0

0.5

1.0
y0-1

Re y1 = Re y2

Im y1 = -Im y2

y3

FIG. 2. �Color online� Functions yj�k��yj�k ,0− ,0+� for T=0
and =1.0�10−4.
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leading order v1	vi�Q̄�, with Q̄=4� /3a. The impurity den-
sity is chosen as ni=1.15�10−3a−2.

Before showing the conductivity, we first present the nu-
merical results of yj�k ,0− ,0+��yj�k�, the solution to Eq. �11�
in Fig. 2 for T=0 and =1.0�10−4. These functions reveal
how the current vertex is renormalized. By comparing to the
bare vertex for which only y0�k�=1 is finite, it is seen that
besides the A0

x component of the vertex is largely enhanced,
the other Aj

x �j�0� components are generated by the impu-
rity scatterings. These functions have appreciable magni-
tudes around the Fermi wave number.

Shown in Fig. 3 is the comparison of the calculated elec-
tric conductivity with the experimental data.2 The conductiv-
ity � obtained by the theoretical calculation for both zero and
room temperature linearly depends on . This feature is in
overall agreement with the experiment. With increasing T, �
is enhanced at small doping, while it is lowered at large
doping. This is because as a function of T, the polarizability
� has a minimum around the chemical potential, which
means that the screening effect is increased with increasing T
at small doping and the opposite at large doping. Especially,
at zero doping �=0 �due to the particle-hole symmetry�, we
have �=4�ln 2�T /�v2; the finite � comes from the particle-
hole excitations. Due to the screening effect from the finite-
temperature particle-hole excitations, the minimum conduc-

tivity �min at zero doping is increased from approximately
1.7e2 /h at T=0 to 2.1e2 /h at T=300 K �both of them ob-
tained by extrapolation from the results of finite carrier con-
centrations�. Close to zero doping, the theoretical calculation
gives rise to a smooth curve due to the appreciable interband
mixing effect, especially at finite temperature. This feature is
in agreement with the experimental observation that � is
saturated at →0. At very low carrier concentrations, the
difference between the present calculation and the experi-
ment is seen in the inset of Fig. 3. �For comparison, we note
that the minimum conductivity predicted by the zero-range
impurity scattering model is 4 /�	1.27 in unit of
e2 /h.5,9–11,18,19,21� We argue that the comparison with experi-
ments could be improved if the effect of Coulomb interac-
tions between electrons is considered. In our recent work
based on the renormalized-ring diagram approach,16 consid-
erable number of particle and hole excitations is shown to
exist respectively in the upper and lower bands even at zero
doping. The presence of these excited charge carriers not
only implies the finite carrier density, but also gives rise to
effective screenings to the charged impurities and, thus, en-
hances the magnitude of the minimum conductivity as com-
pared to what was obtained in the present work. However,
the incorporation of such an idea into the current-current
correlation function is a difficult task, and could be a subject
for future study. Other possible explanation to the experi-
mental result has been given by Hwang et al.13 based on the
inhomogeneity of the impurity distributions and the exis-
tence of large carrier density fluctuations in the system.

IV. SUMMARY

In summary, we have presented the transport theory of
Dirac fermions in graphene. The current-current correlation
function under impurity scatterings with finite-range poten-
tials has been studied in the self-consistent Born approxima-
tion. The electric transport is described by four-coupled in-
tegral equations. The contributions of the charge carriers
from both the upper and lower bands are included, which is
essential for studying the transport properties of a Dirac-
fermion system with low doping and at finite temperature. As
a test of the present approach, we calculate the conductivity
for graphene with charged impurities at zero and room tem-
peratures. The obtained results are qualitatively consistent
with experiments2 and the numerical diagonalization of finite
size systems.12
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FIG. 3. �Color online� Electric conductivity � as function of
electron doping concentration . The present results �green circles
for T=0 and red solid line for T=300 K� are compared with the
experimental data �white circles�. The inset is a magnification of the
graph around zero doping.
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